Beth Israel Lahey Health > Beth Israel Deaconess Medical Center

HARVARD MEDICAL SCHOOL MEDICAL SCHOOL

MicroRNA 362-3p enhances cisplatin sensitivity in BRCA mutant and HER2-negative breast cancer

Background and Aim

- Breast cancer is the second most common cancer in women.
- Therapy response prediction in breast cancer patients remains a key obstacle in personalized treatment.
- We leverage the two-arm, randomized phase II INFORM trial (NCT01670500) to identify differentially expressed pre-treatment plasma miRNAs associated with a) complete pathological response (pCR; i.e., cancer free) and b) residual cancer burden (RCB) 0/1 when treated with an anthracycline- or a platinum-containing neoadjuvant regimen (cisplatin)¹.

Hypothesis

• Pre-treatment plasma miRNAs were associated with pCR.

Materials & Methods

Subjects of the INFORM trial ¹:

- 118 patients were enrolled over a 7 year period from 2012 to 2019 from 13 UShospitals
 - Eligibility was germline *BRCA1/2^{mut}*, tumor was HER2 negative, tumor at least 1.5 cm or node positive.
 - Randomized by estrogen receptor (ER) status and hospital site to receive either neoadjuvant cisplatin monotherapy or doxorubicin plus cyclophosphamide (AC).
 - 1 to 2 tumor core biopsies were obtained for correlative studies, and EDTA blood samples was collected before starting treatment (Fig 1).
- After 4 cycles of protocol-assigned chemotherapy, participants underwent breast surgery (mastectomy or lumpectomy), and sentinel lymph node biopsy or axillary dissection.
- Excised tumor and axillary nodes were assessed for residual cancer.
- Primary outcome of the trial was whether or not the tumor achieved pCR. pCR is defined as the absence of residual invasive breast disease with or without ductal carcinoma *in situ*.
- Secondary outcome was assessing RCB 0/1 versus RCB 2/3. RCB scores of 0, 1, 2, and 3 correspond to absence, minimal, moderate, and extensive residual disease.

Stratification factors : ER⁺ v ER⁻ negative Treatment site

Fig 1. Schematic design of the INFORM trial. Pre-treatment EDTA blood sample was obtained at biopsy. AC, doxorubicin plus cyclophosphamide; LN, lymph node; T, tumor size

MiRNA screening of pre-treatment EDTA blood samples:

- 99 out of 118 patients completed 4 full cycles of therapy and had pre-treatment EDTA blood samples collected.
- Plasma (200 uL) underwent RNA extraction, and screened for 352 miRNAs using the ID3EAL[™] Cancer miRNA Knowledge Panel (Mirxes Pte Ltd, Singapore).
- Raw miRNA Ct values were pre-processed prior to differential analysis (Fig 2).

Reference

Zhaoji Liu^{1,2*}, Shizhong Ke^{1,2,3*}, Catherine Wu^{2,4}, Madison Uyemura^{2,4}, Brian R Sardella^{2,4}, Erica S Massicott^{2,4}, Lin Wang^{1,2}, Emily K Aronson^{1,2}, Xiaohui Li^{1,2}, Dimitra Karagkouni^{2,4}, Nikolas Kalavros^{2,4}, Ioannis S. Vlachos^{2,4}, Felipe Batalini⁵, Cristina Bogsan^{2,4}, Jit Kong Cheong^{6,7}, Lihan Zhou⁷, He Cheng⁷, Phillip Munson⁸, Judy E Garber⁹, Stuart J Schnitt^{2,10}, Nadine M Tung^{1,2}, Frank J Slack^{2,4,11}, Gerburg M Wulf^{1,2} and Yujing J Heng^{2,4,11}

1. Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; 2. Harvard Medical School, Boston, MA, USA; 3. Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; 4. Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA; 5. Department of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA; 6. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS) and NUS Centre for Cancer Research, Singapore; 7. Mirxes, Singapore; 8. Mirxes US, Durham, NC, USA 9. Dana-Farber Cancer Institute, Boston, MA, USA; 10. Brigham and Women's Cancer Center, Brigham and Women's Hospital, Boston, MA, USA; 11. Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; *Co-first authors contributed equally to this work

Materials & Methods

. MiRNA raw Ct values of 99 patients

- 2. Perform QC Check using RNA spike-in (RSI) and Intra-plate calibrator (IPC) 1 and 2
 - 3. Excluded Ct values of ≤ 8 or ≥ 33

4. Perform 1st normalization using RSI 1, RSI 2, IPC 1, IPC 2

- 5. Excluded miRNAs detected in <10% of same
- 6. Perform 2st normalization using global normalization
- 7. Correct for analytical batch effect using Com (sva package, R)

Data ready for differential analysis: 97 samples, 251 miRNAs Fig 2. MiRNA data processing workflow

Results

Plasma miR-362-3p was associated with outcomes only in cisplatin arm.

- Of the 97 subjects, 53 received cisplatin and 44 received AC. As INFORM was a randomized control trial, the clinical characteristics of patients were similar in both treatment arms.
- No miRNA was associated with pCR or RCB 0/1 among patients that received AC at a combined threshold of *p*<0.01 and FDR<0.25.
- Among patients that received cisplatin, 3 miRNAs were associated with pCR and 10 miRNAs associated with RCB 0/1. MiR-362-3p was common between the two analysis (Fig 3).
- MiR-362-3p expression was 1.8- and 1.7-fold higher in patients who achieved pCR or RCB 0/1, respectively (Fig 3).

Paired tumor biopsies express miR-362-3p

- 79 out of the 97 patients had paired pre-treatment tumor smallRNASeq data.
- miR-362-3p expression was detected in all 79 tumors.
- Tumor miR-362-3p expression was not associated with pCR (p>0.05; Mann-362-3p expression (Figs 4A-B).

MiR-362-3p in TCGA breast cancer cases

- In TCGA, miR-362-3p expression in primary and metastatic tumors was 1.9- and 3.4-fold significantly higher compared to adjacent normal breast tissue, respectively (Fig 4C).
- Within primary tumors, miR-362-3p expression was 1.6-fold significantly higher in triple negative breast cancer cases versus ER+/PR+ cases (Fig 4D).

Fig 4. No correlation between plasma and tumor miR-362-3p expression in all 79 patients (A) or among 41 patients who received cisplatin (B). In TCGA, miR-362-3p expression was higher in primary and metastatic tumors compared to adjacent normal breast tissue (C). Triple negative breast tumors have higher miR-362-3p expression than ER+/PR+ tumors.

Data analysis

Data analysis.
Stratified analysis by treatment
was performed using crude and
adjusted binary logistic
regression analyses.
 Confounders include age at
diagnosis, year of enrollment,
clinical grade, stage, triple
negative receptor status, and
degree of tumor infiltrating
lymphocytes.
 No miRNA achieved a false
discovery rate (FDR) of <0.05.
 We report miRNAs that

achieved *p*<0.01 and FDR<0.25

Fig 3. MiR-362-3p was associated with both pCR and RCB 0/1. Tumors that achieved pCR or RCB 0/1 have significantly higher miR-362-3p expression than no pCR or RCB 2/3.

Whitney U test). There was also no correlation between tumor and plasma miR-

Results

Breast cancer cells express and secret miR-362-3p

Fig 5. A. Intracellular miR-362-3p expression in three BRCA1^{mut} cell lines (SUM 149PT, HCC 1937, and MDA-MB 436) and two BRCA1^{wt} cell lines (MDA-MB 468 and MDA-MB 231). **B**. All cell lines secrete miR-362-3p. C. The cell lines demonstrate varying degrees of cisplatin sensitivity; IC50 is shown in D.

- Cisplatin *sensitive* 436 cells (Fig 5D) with miR-362-3p knockdown shows higher cellular proliferation and are now *resistant* to cisplatin (Fig 7B, D).
- resistance.

Conclusion

- had better response to cisplatin.
- tumor suppressor.
- are validating this *in vivo*.

Acknowledgments

This work was supported by Breast Cancer Research Foundation (NMT, GMW, JEG & SJS), NIH R35CA232105 (FJS) and the Ludwig Center at Harvard (GMW). Mirxes provided the ID3EAL[™] Cancer miRNA Knowledge Panels. The miRNA screening was performed by the Detection Unit, Precision RNA Medicine Core at BIDMC.

INITIATIVE FOR RNA MEDICINE HARVARD MEDICAL SCHOOL

Hosted by the Cancer Center at Beth Israel Deaconess Medical Center

 We performed in vitro experiments to better understand the relationship between miR-362-3p and cisplatin sensitivity.

Breast cancer cell lines express and secrete miR-362-3p (Figs 5A-B). Figs 5C and 5D show their baseline sensitivity to cisplatin.

Follow-on experiments were carried out using MDA-MB-231 and 436.

We established miR-362-3p overexpression (OE) and knockdown (KD) 231 and 436 cells lines via lentiviral transduction. (Fig 6). We confirmed the upregulation of miR-362-3p expression in overexpressing cells, and that miR-362-3p was secreted into the extracellular medium.

Fig 6. Overexpressed cells have higher intracellular and extracellular levels of miR-362-3p.

MiR-362-3p inhibits tumor growth and sensitizes tumor cells to cisplatin

Cisplatin *resistant* 231 cells (Fig 5D) with miR-362-3p overexpression have lower cellular proliferation and are now *sensitive* to cisplatin (Fig 7A, C).

We screened selected downstream target genes of miR-362-3p linked to cisplatin

Fig 7. **A & B**. Cell proliferation assay confirms that miR-362-3p is a tumor suppressor in breast cancer. C & D. Cell viability assays show this miRNA sensitizes breast cancer cells to cisplatin. E. The expression of downstream target genes are suppressed by miR-362-3p OE. **F.** Downstream genes are upregulated with miR-362-3p KD.

• BRCA-related breast cancer patients with higher plasma miR-362-3p expression

• MiR-362-3p is expressed in breast tumors *in vivo* and *in vitro*, and functions as a

• Cell lines with high expression of miR-362-3p are sensitive to cisplatin *in vitro*. We